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Excitations of vortices in Abelian Higgs model
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Abstract. The method of constructing excited vortex solutions with higher than unit winding
numbers is used to investigate bubble-like excitations of a closed loop arjl stattering.

1. Introduction

Recently there has been a wide interest in the study of nonlinear field equations which
contain vortex solutions. The reason for this interest is their presence in many contexts
in cosmology [1], particle physics [2] and condensated matter physics [3]. As yet they
were worked out in two general ways of describing dynamics of vortices. The first is
an effective action method which, although correct in principle, can yield rather unpleasant
effective theories. In a generic case one should expect nonlocal effective theories containing
higher derivatives and requiring a restriction on initial data. The restriction on initial data
is necessary for equivalence with the original model [4].

Secondly is a family of methods which does not use an effective action. They are free
from the shortcomings presented in the first method. The second method, as well as the
first method, leads to reduction of the dynamics of the vortex to the dynamics of the string.
The idea of such a reduction of degrees of freedom has its origin in the Nielsen and Olesen
article [5]. Their observation is based on the property of the vortex solutions that when we
approach some values of parameters of these solutions the width of the vortex (understood
as the width of the region in space where density of the energy significantly differs from its
vacuum value) decreases—finally reaching zero width. In this limit vortex-tube coincides
with the line of zeros of the Higgs field. This is the reason for regarding the vortex as a
string in the above mentioned limit. This idea has been generalizeditsidF to describe
nontrivial time evolution of vortices [6].

The string description, although not exact as it is in the zero width limit, is possible
for vortices with non-zero width. If we define string, for example, as a line of zeros of the
Higgs field, we will obtain an approximate string description of vortex.

During the time evolution the line of zeros of the Higgs field sweeps out a two-
dimensional manifold which is called the world-sheet of the vortex. Such a definition
of the world-sheet has the same shortcoming as the definition of the phase speed in the
description of a moving wave. It has been shown that when two vortices interact with each
other the speed of the lines of zeros of the Higgs field can exceed the velocities of light
[7]. As we know the physical aspects of a moving wave are better described by the group
speed which never exceeds the speed of light. If we define the world-sheet of a vortex as
a surface swept out by a set of points where the density of the energy of the vortex has
its maximal valueEma, We will obtain the characteristic similar to the group speed in the
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problem of a moving wave. Such a physical description works very well for one-quantum
flux vortex solutions but for solutions with a winding number bigger than one it can be
saved only in case when we define a string as a collection of ‘centres-of-mass’ of the vortex
[8] (vortices withn > 1 are stable for coupling constant smaller than the critical value).
This difficulty is a consequence of the fact that for vortex witk: 2 the maximum of the
density of the energy does not lie on a line as it is for vortex with= 1 but it lies on

the surface enclosing the line of zeros of the Higgs field [9].

Although the string description of the vortex solutions with> 2 exists it seems
that in this case the membrane description could be more suitable and more precise [10].
Higher precision in the case of vortices with a winding number bigger than one has purely
geometrical nature—a membrane has a reacher geometrical structure than a string. The
membrane method does not give a comprehensive description of vorticea with, but
it only gives a description of some special, although very important from physical point of
view, property of the field configuration, namely the density of the energy. The membrane
description could be compared with a string description of vortices based on a surface of
the zeros of the Higgs field. As it is known a surface of the zeros of the Higgs field,
independently of the finite thickness of the vortex, is a well-defined geometrical object
in spacetime. Similarly, the hypersurface of the maximum of the energy density is also
well defined. The difference between the surface of the zeros of the Higgs field and the
hypersurface of the maximum of the density of the energy lies in fact that only the latter has
a well-defined physical meaning while the surface of zeros is a more mathematical concept
(e.g. it can move with the velocity greater than a velocity of light).

The comprehensive membrane description of vortices in Abelian Higgs model does not
exist, in this sense that does not exist the membrane limit of vortices, although the string
limit of vortices exists. Nonexistence of the membrane limit of the vortex is a consequence
of the fact that the density of the energy does not vanish at the line of zeros of the Higgs
field.

The paper is organized as follows. In section 2 we fix our notation and remind the
membrane method of construction of the excited vortex solutions. Excitations of the vortex
loop are investigated in section 3. Section 4 is devoted to looking for the tracks &f the
scattering in the membrane method and section 5 contains remarks.

2. Reminding of the membrane method of construction excited vortex solutions

At each instant of time we identify the membrane with a surfagel:—o = 0 where

o = gX" ,X",T,, (see notation below). Projectiofi,, on hypersurfacex* ensures
equality d:w|z=0 = 0 E|¢=o for static cylindrically symmetric solutions, wheie denotes

the density of the energy. Moreover, for slightly perturbed static solutions the difference
between hypersurfaces defined by both conditions is also small. This is reason for calling
d:wle—o = 0 ‘maximum of the density of the energy condition’. Time evolution of this
surface yields a three-dimensional manifold in four-dimensional spacetime. A radius-vector
of an arbitrary point on the world-hypersurfa&e (o¢), wherepu = 0, 1, 2, 3 are lorentzian
indices, can be parameterized by the time-like parametdength-like parametes and
parameteé which can be identified with an angle of cylindrical coordinates. The coordinates
(t,0,0) = (c%) are variables on this three-dimensional manifold. The coordinate on the
straight line perpendicular to the world-hypersurfateat the pointX*(z, o, 6) we marké.
Having all the variablegz*) = (o9, &) in the neighbourhood of the world-hypersurfate



Excitations of vortices in Abelian Higgs model 1193

we can write
xt = X*(zr,0,0) +ntE Q)

wheren* is four-vector normal to the hypersurfadzin the pointX*(c“). Tangent four-
vectorsX* , = 9, X", and normal four-vectot,;* to the hypersurfac& obey the conditions:

n'n, =-1 n,X*,=0 8ab = X" aX b (2)

wheren”” is Minkowski metric with signaturé+, —, —, —). The last equation is a definition
of the intrinsic metric on the world-hypersurfage Coefficientsk,;, of extrinsic curvature
are defined by the equatios,, = —X* ,n,,.

The construction of a membrane theory describing the sector of the Abelian Higgs
model containing small perturbations of any fixed vortex solution witp 2 starts from
the Euler—-Lagrange equations for lagrangian density:
2m?\* 1
©) g ©
whereF,,, = 9,A,—9,A, is the field strengthD,¢ = 9,¢ —ieA, ¢ is covariant derivative,
¢ is a complex scalar field and, is a gauge potential.

An excited vortex is naturally obtained as a solution to equations of motion in
coordinates on the curved hypersurface. We assume that

¢=¢(t,0,0,r0(r,0,0)+&_____e""F(§)
&sufficiently large

Aa = Aa(T1 (7,9770('5, Gv 9) +$) AE = Ag(‘[v 6703 70(7—', 07 ‘9)"‘5) (4)

are unknown vortex solutions (with > 2) of field equations. On the other hand, ansatz
(4) could be interpreted as a perturbation of the static solution obtained by local scalings
and shifts of the fields. The radiug(z, o, 6) of a membrane of maximum of the density of
the energy for excited vortex can be split into the radius of a membia(describing the
maximum of the density of the energy of the unperturbed vortex) and the small perturbation
e(t,0,0),i.e.ro(t, 0,0) = ro+e(t, 0, 0). In the next step, assuming that small perturbation
of functions causes the same order perturbation of shape of the cylinder (i.e. coefficients
of extrinsic curvaturek,;), we expand equations of motion with respect to powers. of

The first-order equations of expansion of the equations of motion in perturlzatiane
the form

* 1 *
L= (D,¢) (D ¢) — Zk <¢ ¢ —

¢lkua =0 (5)
g0V, (k¢ A%) — 2k K@, A% =0 (6)
g0V, (kpp A%) — Ky ALy 4 K€ (3. A% — A

+[2kn K0 + ki K0, + 2k K@ ,,]A% =0 @)
kg (8,A% — 8,A°%,)(8,A% — 3,A%) + (3,A% — A1) (9,A% — AY,)

+(3,0° — 1eA%,¢%)* (3,4° — ieA%,¢%)] = 0. (8)

Equations (5)—(8) form the effective membrane theory which have internal degrees of
freedom given by thet%, A%,, A%, ¢°, ¢!, which are defined by the expansions

¢ =9¢°+EpT+E%"+
Ay =A% +EAY +E2A% + - Ap = A% +EAY +82A% + -

(where coefficients of expansions are functions(ef)). In first-order approximation
coefficients A%, A%, Al,, ¢° ¢!, as the only fields defined on the hypersurface,

9)
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Figure 1. Toroidal surface is described by radius of the la®@nd radius-.

describe at least part of the interactions between the walls of the membrane present in
the original theory. Coefficients,, are perturbations of coefficient& @, which give
the geometry of the hypersurface of the maximum of the density of the energy for the
unperturbed functions. The coefficier®s? ,;, for sector of the field theory localized around
the straight-linear vortices ark®, (they give the geometry of the cylinder) or for the
sector localized around the closed loops &#",, and give the geometry of the torus.
The coefficientsk,, = K©,;, + k., give the geometry of the perturbed surface.

Equations (5)—(8) give the geometric constraints which describe how any vortex solution
can be deformed and remain a solution of field equations.

For example, for Abrikosov—Nielsen—Olesen solutions the membrane is a cylinder with
an axis bent like a Nambu—Goto string;( = 0, where(c’) = (r, o) are string coordinates)
but the radius of the hypersurface obtained by the deformation of straight cylinder has its
own dynamics.

3. Excitations of closed loops

Let us consider a closed loop which is a Nielsen—Olesen-type configuration
p=€"Fro+8 A, =(o+8§°A+E)  A=A4y=0 (10)

where F(ro + £) and A(rg + £) are some functions of andrg = ro(¢). The thickness of
the loop is equal to/3 and R = R(¢) is the radius of the loop (see figure 1).
It has been proved numerically that closed loop collapses and dependeRcanafrg
on time is highly nonlinear (only for large loops acceleration is constant) [11]. Equations
of the first order on ansatz (10) have the form:

¢%, =0 (11)
8’ (Vaky¥) =0 (12)
[kne Ktor? + 2k’ Kior, © + kK™ ] A%, = ky ¢ AL, (13)
k% = 0. (14)

Coefficients of the extrinsic curvature for torus are given by the formulae:
Ktorw — Ktorlo — Ktoreq) =0 (1
Ktorw =—fro K" = ff K, = f cogg)(R + roCOLp))

where f = ry + Rcogy), ' is derivative with respect to.
Equations (13) fok = ¢, h = ¢ and equation (14) form a system of algebraic equations
on kyy ks ke, With a trivial solution

kll = qu) = k(p¢ == O. (16)

5)
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Equation (11) is an algebraic equation bn k;,, ky, andkyy when put together with (16)
yields:

kgo = 0. a7)
Now we have to deal with equations (12) and (13) ioe 6. If we put (16)—(17) into
equations (12) and (13) fdr = 6 we will obtain:
[ 8*106ko, + (8" 8'"¥100kor = O (18)
kop = Bko: (19)
where B is a rather complicated function &', g** and their derivatives. Becaugé®
does not depend ofy B does not depend of either. In the limitR <« 1,79 < 1, R > rg

the coefficientB takes formB = roR sin(¢). In the same limit coefficients of the extrinsic
curvature of the torus up to terms linear in perturbations become

Ktorl(p — Ktorte — Ktorew — 0

K'Yy = —ro K% = f K", = cogg)(R + rocosp)).

If we put (19) into (18) we will obtairdyke, = 0 e.g.ky, is arbitrary but does not depend
on 6. If ky, is first order then in approximation to the first order, because of the form of
B, the coefficientt,, is equal to zerd,, ~ 0. Thus, we have obtained that the perturbed
solution is described by the surface characterized by extrinsic curvature coefficients of the
torusK,, = K',, exceptKy = K, + ko, Wherek,, is an arbitrary function which does
not depend or. It is easy to show that conditions dty,;, are fulfilled by the surface of
the bubble excited torus

[X"] = [t, (R +roy cop)) cog6), (R +roy cosp)) sin(0), roy sin(¢)](20)
if y =y@+wt),w= % is only, small first order irfg, perturbation of the toroidal surface
(e.g. infinitesimally differs from one). The only free parameter for this surface is equal to
ko: = (Foyr + %) cog(p), " is derivative with respect t@.

The bubble-like solutions we obtained above (see figure 2) are different from solutions
obtained in previous work [10]. We obtained bubbles which do not move with constant
velocity along a straight line but moving around the loop which radtuslecreases in
nonlinear fashion with time. The trajectory of the bubble moving with the speed of light
has the shape of a spiral. The second effect which is absent in the case of the bubble moving
along the straight line is contraction of the size of the bubble which is a consequence of
decreasing of the thickness of the torg¢).

More careful investigations seem to show that if excitations, found in this section, are
small enough then radiation is negligible [12].
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Figure 2. Bubble-like excitation on the vortex loop.
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4. Tracks of the 7 scattering in the membrane equations

The next interesting effect which is transparent in the membrane methodsdbattering.

It has been examined that tHescattering appears not only for local strings (in the Abelian
Higgs model) but also for global strings (in the Goldstone model) so it is a consequence
of selfinteractions of the scalar field. More precise analysis shows tha§ tbeattering

is a consequence of the short-range interactions. This is why we can restrict ourself to
considerations of the first-order equation in perturbatidor the scalar field (5)

oYk, = 0. (21)
In the case of the vortex solution with = 2, ¢ = e 2F(rq + £, £(t)) where&(t) is
a distance of the line of zeros of the Higgs field from the centre of the mass of the
system. For small distances~ F_;:F: ~ /(x — £)2 4+ y2/(x + &)2 + y2 using definition
r =/x2+y2 =ry+ £ we can evaluate® # 0. The elements of the metric tensor on the
cylinder areg’’ = 5/, g = 0, g% = —r¢? so equation (22) takes the form:

ki — ko — rOZkGO =0. (22)
Let us consider the slightlys(« rg) elliptically deformed cylindrical surface
[X"] = [z, (ro + &) cog6), (ro — &) SIN(O), z]. (23)

For such surface, in the limity > ¢, we can easily evaluate coefficients of the extrinsic
curvature

K;; = K;; = Kgg =0

24
K;g = —¢ Sln(29) Koy = —rg—e = Kcyleg —& K; =¢&. ( )

Using the definition of the., (K., = K™, + k.) we can evaluate perturbations of the
coefficients of the extrinsic curvature, of the elliptically deformed cylinder, from cylindrical
surface. They are equal to

kg = —£ sin(20) koo = —¢ ky =¢ (25)
remainingk,, are equal to zero. Now if we put (26) into (23) we will obtain
&+ ro%e = 0. (26)

If we choice the simple solution of the equation (21)) = o coqrot) then we can write
in andout states of the membrane

[X*]in =[O, (ro + €0) cOS8), (ro — o) SiN(®), z] (27)
(X ot = [’Z (o — £0) COSO), (ro -+ £0) SIN(O), z] . (28)

The section of the surfaceX}']i, in the X—Y plane gives ellipse prolate in-direction
and section X"]ou gives ellipse prolate in-direction. We can transform each other by
coordinate transformatiom — y, y — x. Although we do not know explicit dependence
position of the zerog on deformation of the cylindrical surfacee.g.& = f(¢), having
Fin ~ /(x — €0)2 + y2/(x + £0)%2 + y2 we can by transformatiom — y, y — x, obtain
out field stateFou ~ v/(y — £0)2 4+ x2/(y + £0)% + x2.

Equation (27) says that ellipse prolate along thaxis after half of the period turns into
ellipse prolate along the-axis. It means that at first zeros of the Higgs field come to each
other along the:-axis and then start running away along theaxis (see figure 3). According
to expectations we obtained that tBescattering is due to the short-range interactions of
the scalar field. We can worry only about the fact that after half of the period zeros of the
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(a)

Figure 3. (a) Zeros of the Higgs field move to oneself along thaxis. (@) Zeros of the Higgs
field run away along the-axis.

Higgs field start running in the opposite direction—this is a consequence of the fact that
the membrane method describes only bound states. We can easily imagine that if the initial
speed of the zeros is sufficiently large the approximation fails and the course of the process
of the scattering finishes with the two zeros running away into plus and minus infinity
along they-direction. If we let dependenceon r andz then equation (27) takes the form

& —&” + ro%e = 0, which describes travelling waves moving along the vortex [13].

5. Remarks

With a help of the membrane method of constructing excited vortex solutions in the Abelian
Higgs model we have investigated two physical situations.

First, we considered bubble-like excitations of the closed vortex loop. We obtained that
for large enough loops collapsing with nonrelativistic speed there is a possibility of existing
small bubble-like excitations moving along the loop with the speed of light. Excitations
found in this paper differ from those which move along the straight vortex [10]—they move
along the collapsing circle.

The second phenomenon is thescattering. We have confirmed that thescattering is
a consequence of short-range interactions of the scalar field. On the other hand, this result
may be treated as a test of accuracy of the membrane method.

Acknowledgments

I would like to thank H Aroa for discussions and J Dziarmaga for calling my attention to
the fact that thej scattering may be transparent in the membrane equations. Work partly
supported by the grant KBN 2 P302 049 05.



1198 T Dobrowolski

References

L

(2]

(3]

(4]
(5]
(6]
(7]

(8]
El
(10]
(11]
(12]
(13]

Zeldovich Y B 1980Mon. Not. R. Astron. S0d.92 663
Vilenkin A and Field G 198MNature 326 722

Vilenkin A 1981 Phys. RevD 23 852

Brout R, Englert F and Fishler W 1978hys. Rev. Lett36 649
't Hooft G 1979Nucl. PhysB 153141

Baker M, Bal J S and Zachariasen F 1988ys. RevD 38 1926
Lund F and Regge T 197Bhys. RevD 14 1524

Abrikosov A A 1957 Zh. Exp. Theor. PhyS32 1442

Arodz H and Wegrzyn P 1992Phys. LettB 291251

Nielsen H B and Olesen P 197Rucl. PhysB 61 45

Foster D 1974Nucl. Phys.B 81 84

Rubak P J and Shellar E P S1988 Phys. Lett.209B 262
Myers E, Rebbi C and Strilka R 1988hys. Lett.209B 262
Dziarmaga J 199®hys. RevD 48 3809

Silveira V 1990Phys. RevD 41 1914

Ben-Ya'acov U 1992Nucl. PhysB 382597

Dobrowolski T 1994Phys. RevD 50 6503

de Vega H 197 preprint PAR LPTHE 7714

Arodz H and Hadasz L 199Fhys. RevD 54 4004
Dziarmaga J 199#hys. Lett.328B 392



