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Abstract. The method of constructing excited vortex solutions with higher than unit winding
numbers is used to investigate bubble-like excitations of a closed loop and theπ

2 scattering.

1. Introduction

Recently there has been a wide interest in the study of nonlinear field equations which
contain vortex solutions. The reason for this interest is their presence in many contexts
in cosmology [1], particle physics [2] and condensated matter physics [3]. As yet they
were worked out in two general ways of describing dynamics of vortices. The first is
an effective action method which, although correct in principle, can yield rather unpleasant
effective theories. In a generic case one should expect nonlocal effective theories containing
higher derivatives and requiring a restriction on initial data. The restriction on initial data
is necessary for equivalence with the original model [4].

Secondly is a family of methods which does not use an effective action. They are free
from the shortcomings presented in the first method. The second method, as well as the
first method, leads to reduction of the dynamics of the vortex to the dynamics of the string.
The idea of such a reduction of degrees of freedom has its origin in the Nielsen and Olesen
article [5]. Their observation is based on the property of the vortex solutions that when we
approach some values of parameters of these solutions the width of the vortex (understood
as the width of the region in space where density of the energy significantly differs from its
vacuum value) decreases—finally reaching zero width. In this limit vortex-tube coincides
with the line of zeros of the Higgs field. This is the reason for regarding the vortex as a
string in the above mentioned limit. This idea has been generalized by Förster to describe
nontrivial time evolution of vortices [6].

The string description, although not exact as it is in the zero width limit, is possible
for vortices with non-zero width. If we define string, for example, as a line of zeros of the
Higgs field, we will obtain an approximate string description of vortex.

During the time evolution the line of zeros of the Higgs field sweeps out a two-
dimensional manifold which is called the world-sheet of the vortex. Such a definition
of the world-sheet has the same shortcoming as the definition of the phase speed in the
description of a moving wave. It has been shown that when two vortices interact with each
other the speed of the lines of zeros of the Higgs field can exceed the velocities of light
[7]. As we know the physical aspects of a moving wave are better described by the group
speed which never exceeds the speed of light. If we define the world-sheet of a vortex as
a surface swept out by a set of points where the density of the energy of the vortex has
its maximal valueEmax, we will obtain the characteristic similar to the group speed in the

0305-4470/97/041191+08$19.50c© 1997 IOP Publishing Ltd 1191



1192 T Dobrowolski

problem of a moving wave. Such a physical description works very well for one-quantum
flux vortex solutions but for solutions with a winding number bigger than one it can be
saved only in case when we define a string as a collection of ‘centres-of-mass’ of the vortex
[8] (vortices with n > 1 are stable for coupling constant smaller than the critical value).
This difficulty is a consequence of the fact that for vortex withn > 2 the maximum of the
density of the energyE does not lie on a line as it is for vortex withn = 1 but it lies on
the surface enclosing the line of zeros of the Higgs field [9].

Although the string description of the vortex solutions withn > 2 exists it seems
that in this case the membrane description could be more suitable and more precise [10].
Higher precision in the case of vortices with a winding number bigger than one has purely
geometrical nature—a membrane has a reacher geometrical structure than a string. The
membrane method does not give a comprehensive description of vortices withn > 2, but
it only gives a description of some special, although very important from physical point of
view, property of the field configuration, namely the density of the energy. The membrane
description could be compared with a string description of vortices based on a surface of
the zeros of the Higgs field. As it is known a surface of the zeros of the Higgs field,
independently of the finite thickness of the vortex, is a well-defined geometrical object
in spacetime. Similarly, the hypersurface of the maximum of the energy density is also
well defined. The difference between the surface of the zeros of the Higgs field and the
hypersurface of the maximum of the density of the energy lies in fact that only the latter has
a well-defined physical meaning while the surface of zeros is a more mathematical concept
(e.g. it can move with the velocity greater than a velocity of light).

The comprehensive membrane description of vortices in Abelian Higgs model does not
exist, in this sense that does not exist the membrane limit of vortices, although the string
limit of vortices exists. Nonexistence of the membrane limit of the vortex is a consequence
of the fact that the density of the energy does not vanish at the line of zeros of the Higgs
field.

The paper is organized as follows. In section 2 we fix our notation and remind the
membrane method of construction of the excited vortex solutions. Excitations of the vortex
loop are investigated in section 3. Section 4 is devoted to looking for the tracks of theπ

2
scattering in the membrane method and section 5 contains remarks.

2. Reminding of the membrane method of construction excited vortex solutions

At each instant of time we identify the membrane with a surface∂ξω|ξ=0 = 0 where
ω = gabXµ,aX

ν
,bTµν (see notation below). ProjectionTµν on hypersurfaceXµ ensures

equality ∂ξω|ξ=0 = ∂ξE|ξ=0 for static cylindrically symmetric solutions, whereE denotes
the density of the energy. Moreover, for slightly perturbed static solutions the difference
between hypersurfaces defined by both conditions is also small. This is reason for calling
∂ξω|ξ=0 = 0 ‘maximum of the density of the energy condition’. Time evolution of this
surface yields a three-dimensional manifold in four-dimensional spacetime. A radius-vector
of an arbitrary point on the world-hypersurfaceXµ(σ a), whereµ = 0, 1, 2, 3 are lorentzian
indices, can be parameterized by the time-like parameterτ , length-like parameterσ and
parameterθ which can be identified with an angle of cylindrical coordinates. The coordinates
(τ, σ, θ) = (σ a) are variables on this three-dimensional manifold. The coordinate on the
straight line perpendicular to the world-hypersurface6 at the pointXµ(τ, σ, θ) we markξ .
Having all the variables(ζ α) = (σ α, ξ) in the neighbourhood of the world-hypersurface6
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we can write

xµ = Xµ(τ, σ, θ)+ nµξ (1)

wherenµ is four-vector normal to the hypersurface6 in the pointXµ(σ a). Tangent four-
vectorsXµ,a = ∂aXµ, and normal four-vectorniµ to the hypersurface6 obey the conditions:

nµnµ = −1 nµX
µ
,a = 0 gab = Xµ,aXµ,b (2)

whereηµν is Minkowski metric with signature(+,−,−,−). The last equation is a definition
of the intrinsic metric on the world-hypersurface6. CoefficientsKab of extrinsic curvature
are defined by the equationsKab = −Xµ,abnµ.

The construction of a membrane theory describing the sector of the Abelian Higgs
model containing small perturbations of any fixed vortex solution withn > 2 starts from
the Euler–Lagrange equations for lagrangian density:

L = (Dµφ)
∗(Dµφ)− 1

4
λ

(
φ∗φ − 2m2

λ

)2

− 1

4
FµνF

µν (3)

whereFµν = ∂µAν−∂νAµ is the field strength,Dµφ = ∂µφ− ieAµφ is covariant derivative,
φ is a complex scalar field andAµ is a gauge potential.

An excited vortex is naturally obtained as a solution to equations of motion in
coordinates on the curved hypersurface. We assume that

φ = φ(τ, σ, θ, r0(τ, σ, θ)+ ξ)−−−−−−−−→
ξsufficiently large

e−inθF (ξ)

Aa = Aa(τ, σ, θ, r0(τ, σ, θ)+ ξ) Aξ = Aξ(τ, σ, θ, r0(τ, σ, θ)+ ξ) (4)

are unknown vortex solutions (withn > 2) of field equations. On the other hand, ansatz
(4) could be interpreted as a perturbation of the static solution obtained by local scalings
and shifts of the fields. The radiusr0(τ, σ, θ) of a membrane of maximum of the density of
the energy for excited vortex can be split into the radius of a membraner0 (describing the
maximum of the density of the energy of the unperturbed vortex) and the small perturbation
ε(τ, σ, θ), i.e.r0(τ, σ, θ) = r0+ε(τ, σ, θ). In the next step, assuming that small perturbation
of functions causes the same order perturbation of shape of the cylinder (i.e. coefficients
of extrinsic curvatureKab), we expand equations of motion with respect to powers ofε.

The first-order equations of expansion of the equations of motion in perturbationε have
the form

φ1ka
a = 0 (5)

gab∇a(kbcA0
c)− 2kabK(0)

abA
0
ξ = 0 (6)

gab∇a(kbhA0
ξ )− khdA1

d + khc(∂cA0
ξ − A1

c)

+[2khcK(0)
cd + khdK(0)cc + 2kadK(0)

ah]A0
d = 0 (7)

kab[gcd(∂aA
0
c − ∂cA0

a)(∂bA
0
d − ∂dA0

b)+ (∂aA0
ξ − A1

a)(∂bA
0
ξ − A1

b)

+(∂aφ0− ieA0
aφ

0)∗(∂bφ0− ieA0
bφ

0)] = 0. (8)

Equations (5)–(8) form the effective membrane theory which have internal degrees of
freedom given by theA0

ξ , A0
a, A1

a, φ0, φ1, which are defined by the expansions

φ = φ0+ ξφ1+ ξ2φ2+ · · ·
Aa = A0

a + ξA1
a + ξ2A2

a + · · · Aξ = A0
ξ + ξA1

ξ + ξ2A2
ξ + · · ·

(9)

(where coefficients of expansions are functions of(σ a)). In first-order approximation
coefficientsA0

ξ , A0
a, A1

a, φ0, φ1, as the only fields defined on the hypersurfaceXµ,
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Figure 1. Toroidal surface is described by radius of the loopR and radiusr0.

describe at least part of the interactions between the walls of the membrane present in
the original theory. Coefficientskab are perturbations of coefficientsK(0)

ab which give
the geometry of the hypersurface of the maximum of the density of the energy for the
unperturbed functions. The coefficientsK(0)

ab for sector of the field theory localized around
the straight-linear vortices areK(cyl)

ab (they give the geometry of the cylinder) or for the
sector localized around the closed loops areK(tor)

ab and give the geometry of the torus.
The coefficientsKab = K(0)

ab + kab give the geometry of the perturbed surface.
Equations (5)–(8) give the geometric constraints which describe how any vortex solution

can be deformed and remain a solution of field equations.
For example, for Abrikosov–Nielsen–Olesen solutions the membrane is a cylinder with

an axis bent like a Nambu–Goto string (Ki
i = 0, where(σ i) = (τ, σ ) are string coordinates)

but the radius of the hypersurface obtained by the deformation of straight cylinder has its
own dynamics.

3. Excitations of closed loops

Let us consider a closed loop which is a Nielsen–Olesen-type configuration

φ = e−inϕF (r0+ ξ) Aϕ = (r0+ ξ)2A(r0+ ξ) At = Aθ = 0 (10)

whereF(r0 + ξ) andA(r0 + ξ) are some functions ofξ and r0 = r0(t). The thickness of
the loop is equal to 2r0 andR = R(t) is the radius of the loop (see figure 1).

It has been proved numerically that closed loop collapses and dependence ofR andr0
on time is highly nonlinear (only for large loops acceleration is constant) [11]. Equations
of the first order on ansatz (10) have the form:

φ1ka
a = 0 (11)

gab(∇akb ϕ) = 0 (12)

[khcKtor
cϕ + 1

2kh
ϕKtorc

c + kaϕK tor
ah]A0

ϕ = kh ϕA1
ϕ (13)

kϕϕ = 0. (14)

Coefficients of the extrinsic curvature for torus are given by the formulae:

K tor
tϕ = K tor

tθ = K tor
θϕ = 0

K tor
ϕϕ = −f r0 K tor

θθ = f ḟ K tor
t t = f cos(ϕ)(R + r0 cos(ϕ))

(15)

wheref = ṙ0+ Ṙ cos(ϕ), ‘ .’ is derivative with respect tot .
Equations (13) forh = t , h = ϕ and equation (14) form a system of algebraic equations

on ktt ,ktϕ ,kϕϕ with a trivial solution

ktt = ktϕ = kϕϕ = 0. (16)
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Equation (11) is an algebraic equation onktt , ktϕ , kϕϕ andkθθ when put together with (16)
yields:

kθθ = 0. (17)

Now we have to deal with equations (12) and (13) forh = θ . If we put (16)–(17) into
equations (12) and (13) forh = θ we will obtain:

[gθθgϕϕ ]∂θkθϕ + [gθθgtϕ ]∂θkθt = 0 (18)

kθϕ = Bkθt (19)

whereB is a rather complicated function ofK tor
ab, gab and their derivatives. Becausegab

does not depend onθ , B does not depend onθ either. In the limitṘ � 1, ṙ0� 1, R � r0
the coefficientB takes formB = r0Ṙ sin(ϕ). In the same limit coefficients of the extrinsic
curvature of the torus up to terms linear in perturbations become

K tor
tϕ = K tor

tθ = K tor
θϕ = 0

K tor
ϕϕ = −r0 K tor

θθ = ḟ K tor
t t = cos(ϕ)(R + r0 cos(ϕ)).

If we put (19) into (18) we will obtain∂θkθt = 0 e.g.kθt is arbitrary but does not depend
on θ . If kθt is first order then in approximation to the first order, because of the form of
B, the coefficientkθϕ is equal to zerokθϕ ≈ 0. Thus, we have obtained that the perturbed
solution is described by the surface characterized by extrinsic curvature coefficients of the
torusKab = K tor

ab exceptKθt = K tor
θt + kθt wherekθt is an arbitrary function which does

not depend onθ . It is easy to show that conditions onKab are fulfilled by the surface of
the bubble excited torus

[Xµ] = [t, (R+ r0ψ cos(ϕ)) cos(θ), (R+ r0ψ cos(ϕ)) sin(θ), r0ψ sin(ϕ)](20)

if ψ = ψ(θ+ωt), ω = 1
R

is only, small first order inr0
R

, perturbation of the toroidal surface
(e.g. infinitesimally differs from one). The only free parameter for this surface is equal to
kθt = (ṙ0ψ́ + r0

R
ψ
′′
) cos2(ϕ), ‘ ′’ is derivative with respect toθ .

The bubble-like solutions we obtained above (see figure 2) are different from solutions
obtained in previous work [10]. We obtained bubbles which do not move with constant
velocity along a straight line but moving around the loop which radiusR decreases in
nonlinear fashion with time. The trajectory of the bubble moving with the speed of light
has the shape of a spiral. The second effect which is absent in the case of the bubble moving
along the straight line is contraction of the size of the bubble which is a consequence of
decreasing of the thickness of the torusr0(t).

More careful investigations seem to show that if excitations, found in this section, are
small enough then radiation is negligible [12].

Figure 2. Bubble-like excitation on the vortex loop.
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4. Tracks of the π
2 scattering in the membrane equations

The next interesting effect which is transparent in the membrane method is theπ
2 scattering.

It has been examined that theπ2 scattering appears not only for local strings (in the Abelian
Higgs model) but also for global strings (in the Goldstone model) so it is a consequence
of selfinteractions of the scalar field. More precise analysis shows that theπ

2 scattering
is a consequence of the short-range interactions. This is why we can restrict ourself to
considerations of the first-order equation in perturbationε for the scalar field (5)

φ1ka
a = 0. (21)

In the case of the vortex solution withn = 2, φ = e−2iθF (r0 + ξ, ε̄(t)) where ε̄(t) is
a distance of the line of zeros of the Higgs field from the centre of the mass of the
system. For small distancesF ∼ F−ε̄Fε̄ ∼

√
(x − ε̄)2+ y2

√
(x + ε̄)2+ y2 using definition

r =
√
x2+ y2 = r0 + ξ we can evaluateφ1 6= 0. The elements of the metric tensor on the

cylinder aregij = ηij , giθ = 0, gθθ = −r02 so equation (22) takes the form:

ktt − kzz − r02kθθ = 0. (22)

Let us consider the slightly (ε � r0) elliptically deformed cylindrical surface

[Xµ] = [t, (r0+ ε) cos(θ), (r0− ε) sin(θ), z]. (23)

For such surface, in the limitr0 � ε, we can easily evaluate coefficients of the extrinsic
curvature

Ktz = Kzz = Kθθ = 0

Ktθ = −ε̇ sin(2θ) Kθθ = −r0− ε = Kcyl
θθ − ε Ktt = ε̈.

(24)

Using the definition of thekab (Kab = Kcyl
ab + kab) we can evaluate perturbations of the

coefficients of the extrinsic curvature, of the elliptically deformed cylinder, from cylindrical
surface. They are equal to

ktθ = −ε̇ sin(2θ) kθθ = −ε ktt = ε̈ (25)

remainingkab are equal to zero. Now if we put (26) into (23) we will obtain

ε̈ + r02ε = 0. (26)

If we choice the simple solution of the equation (27)ε(t) = ε0 cos(r0t) then we can write
in andout states of the membrane

[Xµ]in = [0, (r0+ ε0) cos(θ), (r0− ε0) sin(θ), z] (27)

[Xµ]out =
[
π

r0
, (r0− ε0) cos(θ), (r0+ ε0) sin(θ), z

]
. (28)

The section of the surface [Xµ]in in the X–Y plane gives ellipse prolate inx-direction
and section [Xν ]out gives ellipse prolate iny-direction. We can transform each other by
coordinate transformationx → y, y → x. Although we do not know explicit dependence
position of the zeros̄ε on deformation of the cylindrical surfaceε e.g. ε̄ = f (ε), having
Fin ∼

√
(x − ε̄0)2+ y2

√
(x + ε̄0)2+ y2 we can by transformationx → y, y → x, obtain

out field stateFout ∼
√
(y − ε̄0)2+ x2

√
(y + ε̄0)2+ x2.

Equation (27) says that ellipse prolate along thex-axis after half of the period turns into
ellipse prolate along they-axis. It means that at first zeros of the Higgs field come to each
other along thex-axis and then start running away along they-axis (see figure 3). According
to expectations we obtained that theπ2 scattering is due to the short-range interactions of
the scalar field. We can worry only about the fact that after half of the period zeros of the
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Figure 3. (a) Zeros of the Higgs field move to oneself along thex-axis. (b) Zeros of the Higgs
field run away along they-axis.

Higgs field start running in the opposite direction—this is a consequence of the fact that
the membrane method describes only bound states. We can easily imagine that if the initial
speed of the zeros is sufficiently large the approximation fails and the course of the process
of the scattering finishes with the two zeros running away into plus and minus infinity
along they-direction. If we let dependenceε on t andz then equation (27) takes the form
ε̈ − ε” + r02ε = 0, which describes travelling waves moving along the vortex [13].

5. Remarks

With a help of the membrane method of constructing excited vortex solutions in the Abelian
Higgs model we have investigated two physical situations.

First, we considered bubble-like excitations of the closed vortex loop. We obtained that
for large enough loops collapsing with nonrelativistic speed there is a possibility of existing
small bubble-like excitations moving along the loop with the speed of light. Excitations
found in this paper differ from those which move along the straight vortex [10]—they move
along the collapsing circle.

The second phenomenon is theπ2 scattering. We have confirmed that theπ2 scattering is
a consequence of short-range interactions of the scalar field. On the other hand, this result
may be treated as a test of accuracy of the membrane method.

Acknowledgments

I would like to thank H Arod́z for discussions and J Dziarmaga for calling my attention to
the fact that theπ2 scattering may be transparent in the membrane equations. Work partly
supported by the grant KBN 2 P302 049 05.



1198 T Dobrowolski

References

[1] Zeldovich Y B 1980Mon. Not. R. Astron. Soc.192 663
Vilenkin A and Field G 1987Nature326 722
Vilenkin A 1981 Phys. Rev.D 23 852

[2] Brout R, Englert F and Fishler W 1976Phys. Rev. Lett.36 649
’t Hooft G 1979Nucl. Phys.B 153 141
Baker M, Ball J S and Zachariasen F 1988Phys. Rev.D 38 1926

[3] Lund F and Regge T 1976Phys. Rev.D 14 1524
Abrikosov A A 1957 Zh. Exp. Theor. Phys.32 1442
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